If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^(2)+2t-950=0
a = 4.9; b = 2; c = -950;
Δ = b2-4ac
Δ = 22-4·4.9·(-950)
Δ = 18624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18624}=\sqrt{64*291}=\sqrt{64}*\sqrt{291}=8\sqrt{291}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{291}}{2*4.9}=\frac{-2-8\sqrt{291}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{291}}{2*4.9}=\frac{-2+8\sqrt{291}}{9.8} $
| 180=(x-5)+(2x+5)+60 | | 180=102+(-3x) | | 11.25x+15.25x+5=200 | | -9-3u=-4u | | 180=(x-4)+(x+4)+x | | 180=(x-4)+(x+4) | | 3(3x+5)=7)x+4) | | 6x+4x=51+5 | | 8f=3f | | x/2-2x/5=3 | | -w+7=6w-7 | | 25d=45 | | 9d=7d+22 | | 5z-12=z+8 | | 11.25x+11.25x+15.25x+5=200 | | 8r-3=-2r-103 | | 4(5x+5=5(4x+4) | | 10+2z+8=-7+7z | | 10-6c=-4c-10 | | 7m=5m-2m | | 12z+13=11z+17 | | 4-10f=-3-9f | | 8p+7=-2+5p+6p | | 8x32=16x | | -6+3n=1-4n | | -8k=10-10k | | 10/x=7.1 | | -2y+7=3y-38 | | 5+7r=9+6r | | 10j-9=j+9 | | 6+5x=2+7x | | 15c+7=9c-11 |